Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned July 25, 2017

<> Embed

@  Email

Report

Uploaded by user
Algorithm spots abnormal heart rhythms with doctor-like accuracy
<> Embed @  Email Report

Algorithm spots abnormal heart rhythms with doctor-like accuracy

Mariella Moon, @mariella_moon

July 09, 2017
 
 
 Algorithm spots abnormal heart rhythms with doctor-like accuracy | DeviceDaily.com
 
 
GIPhotoStock

While not all arrhythmias are fatal or even dangerous, it’s still a cause for concern. Some, after all, could cause heart failure and cardiac arrest, and a lot of people with abnormal heart rhythms don’t even show symptoms. A team of researchers from Stanford University might have found a way to effectively diagnose the condition even if a person isn’t exhibiting symptoms and even without a doctor. They’ve developed an algorithm that can detect 14 types of arrhythmia — they also claim that based on their tests, it can perform “better than trained cardiologists.”

See, an ECG doesn’t always show the presence of arrhythmia, so doctors sometimes order patients to wear a wearable ECG device to monitor their heartbeat for two weeks. The researchers took advantage of that practice to create their algorithm. They used the massive dataset provided by heartbeat monitor company iRhythm to train a deep neural network for seven months until it’s capable of detecting 14 types of arrhythmia by looking at ECGs.

To ensure the results’ accuracy, the team had six cardiologists look at the data and diagnose each individual. They found that the algorithm was able to compete with the cardiologists, and in some cases, it was even able to differentiate between two very similar types of arrhythmia, something that could mean the difference between life and death.

Pranav Rajpurkar, the paper’s co-lead author, said:

“The differences in the heartbeat signal can be very subtle but have massive impact in how you choose to tackle these detection. For example, two forms of the arrhythmia known as second-degree atrioventricular block look very similar, but one requires no treatment while the other requires immediate attention.”

The scientists are hoping for their creation to lead to a diagnostic tool people in developing nations and remote areas can use if they don’t have immediate access to a doctor. They also believe it could be used on a wearable device to pick up signs of stroke, heart failure or cardiac arrest in at-risk patients.

Source: Stanford
 

(48)