Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned September 30, 2018

<> Embed

@  Email

Report

Uploaded by user
Deezer’s AI mood detection could lead to smarter song playlists
<> Embed @  Email Report

Deezer’s AI mood detection could lead to smarter song playlists

Jon Fingas, @jonfingas

September 23, 2018
 

Deezer's AI mood detection could lead to smarter song playlists | DeviceDaily.com

 
 
 

Astute listeners know that you can’t gauge a song’s mood solely through the instrumentation or the lyrics, but that’s often what AI has been asked to do — and that’s not much help if you’re trying to sift through millions of songs to find something melancholic or upbeat Thankfully, Deezer’s researchers have found a way to make that AI consider the totality of a song before passing judgment. They’ve developed a deep learning system that gauges the emotion and intensity of a track by relying on a wide variety of data, not just a single factor like the lyrics.

Deezer trained the AI using raw audio signals, linguistic context reconstruction models and a Million Song Dataset that aggregates Last.fm tags describing tunes (such as “calm” or “sad”). The researchers mapped the MSD to Deezer’s library using song metadata, extracting individual words from the lyrics in the process. The result was an 18,644-song database the team could use to both train AI on song moods and to test its theories.

The system is merely average at detecting the mood of a song based on lyrics. However, the association between audio and lyrics helped it gauge the energy of a given piece more effectively than past techniques. This could help identify the difference between a soothing downtempo piece and an upbeat dance track, as an example.

This isn’t ready for use in services like Deezer. The research group wants to look at different training models (such as an unsupervised system that looks at huge volumes of unlabeled info) to improve the accuracy. You can see where this might go, mind you. Deezer could automatically generate playlists that cater to a wide variety of moods without having to tag every song by hand. You could listen to songs that are just upbeat enough to improve your spirits, or slow enough to set you at ease without putting you to sleep.

Engadget RSS Feed

(31)