Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned March 31, 2017

<> Embed

@  Email

Report

Uploaded by user
IBM inches toward human-like accuracy for speech recognition
<> Embed @  Email Report

IBM inches toward human-like accuracy for speech recognition

Stefanie Fogel, @stefaniefogel

March 10, 2017
 

Wachiwit via Getty Images

The tech world has spent years trying to create speech recognition software that listens as well as humans. Now, IBM says it’s achieved a 5.5 percent word error rate, down from its previous record of 6.9 percent — an industry milestone that could eventually lead to improvements in voice assistants like Siri and Alexa.

Microsoft claimed to reach a 5.9 percent word error rate last October using neural language models resembling associative word clouds. At the time, the company believed 5.9 percent was equivalent to human parity. But, IBM says it’s not popping the champagne yet. “As part of our process in reaching today’s milestone, we determined human parity is actually lower than what anyone has yet achieved — at 5.1 percent,” George Saon, IBM principal research scientist, wrote in a blog post this week.

IBM reached the 5.5 percent milestone by combining so-called Long Short-Term Memory, an artificial neural network, and WaveNet language models with three strong acoustic models. It was then measured using the “SWITCHBOARD” corpus, a collection of telephone conversations that’s been used as a benchmark for speech recognition software for decades. SWITCHBOARD is not the industry standard for measuring human parity, however, which makes breakthroughs harder to achieve.

“The ability to recognize speech as well as humans do is a continuing challenge, since human speech, especially during spontaneous conversation, is extremely complex,” said Julia Hirschberg, a professor and Chair at the Department of Computer Science at Columbia University, in a statement to IBM. “It’s also difficult to define human performance, since humans also vary in their ability to understand the speech of others.”

(47)

Pinned onto