Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned December 10, 2016

<> Embed

@  Email

Report

Uploaded by user
Light-based neural network could lead to super-fast AI
<> Embed @  Email Report

Light-based neural network could lead to super-fast AI

Jon Fingas , @jonfingas

November 21, 2016
 

Getty Images/Brand X

It’s one thing to create computers that behave like brains, but it’s something else to make them perform as well as brains. Conventional circuitry can only operate so quickly as part of a neural network, even if it’s sometimes much more powerful than standard computers. However, Princeton researchers might have smashed that barrier: they’ve built what they say is the first photonic neural network. The system mimics the brain with “neurons” that are really light waveguides cut into silicon substrates. As each of those nodes operates in a specific wavelength, you can make calculations by summing up the total power of the light as it’s fed into a laser — and the laser completes the circuit by sending light back to the nodes. The result is a machine that can calculate a differential math equation 1,960 times faster than a typical processor.

The Princeton prototype is very simple, with just 49 synthetic neurons. It’s nowhere close to replacing the CPU in your phone, let alone the heavy-duty processing power you see in existing neural networks. To put it mildly, though, photonic networks could have tremendous implications for artificial intelligence. They would be particularly useful for rapidly processing info in “radio, control and scientific computing,” according to the scientists. And in the long term, learning systems could have more human-like accuracy and response times when recognizing objects and actions — important for robots that don’t have time to waste. Any truly dramatic developments are likely years away, but it’s notable that they’re even on the horizon.

(25)

Pinned onto