Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned October 23, 2019

<> Embed

@  Email

Report

Uploaded by user
MIT-IBM developed a faster way to train video recognition AI
<> Embed @  Email Report

MIT-IBM developed a faster way to train video recognition AI

Christine Fisher, @cfisherwrites

October 09, 2019
 
MIT-IBM developed a faster way to train video recognition AI | DeviceDaily.com

Machine learning has given computers the ability to do things like identify faces and read medical scans. But when it’s tasked with interpreting videos and real-world events, the models that make machine learning possible become large and cumbersome. A team from the MIT-IBM Watson AI Lab believe they have a solution. They’ve come up with a method that reduces the size of video-recognition models, speeds up training and could improve performance on mobile devices.

The trick is in shifting how video recognition models view time. Current models encode the passage of time in a sequence of images, which creates bigger, computationally-intensive models. The MIT-IBM researchers designed a temporal shift module, which gives the model a sense of time passing without explicitly representing it. In tests, the method was able to train the deep-learning, video recognition AI three times faster than existing methods.

The temporal shift module could make it easier to run video recognition models on mobile devices. “Our goal is to make AI accessible to anyone with a low-power device,” said MIT Assistant Professor Song Han. “To do that we need to design efficient AI models that use less energy and can run smoothly on edge devices where so much of AI is moving.”

By reducing the computing power required for training, the method might also help reduce AI’s carbon footprint. It could help platforms like Facebook and YouTube spot violent or terrorist footage, and it might allow medical institutions like hospitals to run AI applications locally, rather than in the cloud, which could keep sensitive data more secure. The researchers will present their findings in a paper at the International Conference on Computer Vision later this month.

Engadget RSS Feed

(28)