Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

admin
Pinned August 30, 2017

<> Embed

@  Email

Report

Uploaded by user
Scientists recreate Neptune’s diamond rain using powerful lasers
<> Embed @  Email Report

Scientists recreate Neptune’s diamond rain using powerful lasers

Mariella Moon, @mariella_moon

August 21, 2017
 
Scientists recreate Neptune's diamond rain using powerful lasers | DeviceDaily.com
Greg Stewart/SLAC National Accelerator Laboratory

While we’ve yet to fully explore Neptune and its fellow gas giants, scientists have a lot of theories about them based on the info we know. For instance, they believe that it rains diamonds on those planets — diamonds that sink into their interior and form a sparkly crust around their solid cores. Since it might take a long time before we can study our gas giants more closely, a team of researchers have decided to take matters into their own hands. They recreated Neptune’s conditions at Stanford’s SLAC Laboratory and successfully observed the formation of diamond rain, thanks to the help of some very powerful lasers.

The team used a plastic material called polystyrene to simulate Neptune’s methane-rich atmosphere. Both the plastic and methane, which is responsible for the planet’s blue cast, are made of hydrogen and carbon molecules. To create the high-pressure conditions that squeeze those hydrogen and carbon molecules into diamonds, they used SLAC’s Matter in Extreme Conditions (MEC) instrument located inside the most powerful x-ray laser in the world, the Linac Coherent Light Source (LCLS). This instrument combines the beams emitted by LCLS with high power optical laser beams.

SLAC recently upgraded MEC to give it the power of 17 Teslas discharging 100 kilowatt-hour batteries in a single second. Scientists can now use it to recreate the extremely high pressure conditions of distant planets for study, which is exactly what this particular group did. They created shockwaves in the plastic using MEC’s lasers, which turned almost every carbon atom in the material into diamond structures a few nanometers in size. The stones Uranus and Neptune squeeze out can make Marilyn Monroe swoon, though: the researchers believe they could reach millions of carats in weight.

The lasers they used also allowed the team to gather data in real time, something previous attempts weren’t able to do because the conditions needed to create diamonds only last a fraction of a second in the lab. This gives the researchers valuable info on how diamond rains happen, and scientists could apply the knowledge gained from this experiment when studying exoplanets. In the future, people could also use this study’s results to manufacture nanodiamonds for jewelry, scientific equipment, electronics and other commercial purposes.

Now that they’re done recreating Neptune in the lab, the researchers plan to use the same methods to look into the interior of other types of planets. Team leader Dominik Kraus explained that since “[w]e can’t go inside the planets and look at them… these laboratory experiments complement satellite and telescope observations.”

 

(41)

Pinned onto